skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tinaz, Berk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inverse problems arise in a multitude of applications, where the goal is to recover a clean signal from noisy and possibly (non)linear observations. The difficulty of a reconstruction problem depends on multiple factors, such as the ground truth signal structure, the severity of the degradation and the complex interactions between the above. This results in natural sample-by-sample variation in the difficulty of a reconstruction problem. Our key observation is that most existing inverse problem solvers lack the ability to adapt their compute power to the difficulty of the reconstruction task, resulting in subpar performance and wasteful resource allocation. We propose a novel method, severity encoding, to estimate the degradation severity of corrupted signals in the latent space of an autoencoder. We show that the estimated severity has strong correlation with the true corruption level and can provide useful hints on the difficulty of reconstruction problems on a sample-by-sample basis. Furthermore, we propose a reconstruction method based on latent diffusion models that leverages the predicted degradation severities to fine-tune the reverse diffusion sampling trajectory and thus achieve sample-adaptive inference times. Our framework, Flash-Diffusion, acts as a wrapper that can be combined with any latent diffusion-based baseline solver, imbuing it with sample-adaptivity and acceleration. We perform experiments on both linear and nonlinear inverse problems and demonstrate that our technique greatly improves the performance of the baseline solver and achieves up to 10× acceleration in mean sampling speed. 
    more » « less
  2. Diffusion models have established new state of the art in a multitude of computer vision tasks, in- cluding image restoration. Diffusion-based inverse problem solvers generate reconstructions of ex- ceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degra- dation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics. Source code and pre-trained models will be released soon. 
    more » « less
  3. In accelerated MRI reconstruction, the anatomy of a patient is recovered from a set of under-sampled and noisy measurements. Deep learning approaches have been proven to be successful in solving this ill-posed inverse problem and are capable of producing very high quality reconstructions. However, current architectures heavily rely on convolutions, that are content-independent and have difficulties modeling long-range dependencies in images. Recently, Transformers, the workhorse of contemporary natural language processing, have emerged as powerful building blocks for a multitude of vision tasks. These models split input images into nonoverlapping patches, embed the patches into lower-dimensional tokens and utilize a self-attention mechanism that does not suffer from the aforementioned weaknesses of convolutional architectures. However, Transformers incur extremely high compute and memory cost when 1) the input image resolution is high and 2) when the image needs to be split into a large number of patches to preserve fine detail information, both of which are typical in low-level vision problems such as MRI reconstruction, having a compounding effect. To tackle these challenges, we propose HUMUS-Net, a hybrid architecture that combines the beneficial implicit bias and efficiency of convolutions with the power of Transformer blocks in an unrolled and multi-scale network. HUMUS-Net extracts high-resolution features via convolutional blocks and refines low-resolution features via a novel Transformer-based multi-scale feature extractor. Features from both levels are then synthesized into a high-resolution output reconstruction. Our network establishes new state of the art on the largest publicly available MRI dataset, the fastMRI dataset. We further demonstrate the performance of HUMUS-Net on two other popular MRI datasets and perform fine-grained ablation studies to validate our design. 
    more » « less